Project Anacapa: A Minimalist Autograder Based On GitHub

Hunter Laux, B.S.

A Project Submitted to the Department of Computer Science
of the University of California, Santa Barbara
in Partial Fulfillment of the Requirements for the
Degree of Master of Science

December 7, 2015
ABSTRACT

Automatic grading systems for programming assignments, autograders, are a time saving
resource and a force multiplier for instructors and TAs. Students appreciate the instant feedback
autograders provide on their assignments. An autograder should be easy to deploy, easy to
learn for both the professor and the student, maintainable, and flexible. It is also helpful if it
aligns with common development practices such as test-driven development (TDD) and
continuous integration (Cl). Existing autograding systems, including the current submit.cs
system in place at UCSB, have a number of deficiencies, including ease of use, support, and
maintenance challenges. The Anacapa grader takes a minimalist approach to developing an
autograder, providing only the most necessary autograding functions with a minimum of source
code and application infrastructure. We accomplish this by leveraging GitHub.com and
classroom.GitHub.com for managing projects, submissions, configuration and feedback.

In this paper we will discuss the limitations of existing autograder systems. We will then describe
how Anacapa overcomes these limitations, providing a scalable, easy to use system with a
minimal amount of code to be maintained. We will explain the system both from an instructor
and student perspective, show how the system is aligned with current industry practices, and
provide an overview of support and maintenance concerns. We will conclude by describing
suggestions for future work.

Contents

N =

[~ [eo

[&)]

Introduction

Background on Autograder Systems

2.1 Evaluation of existing autograders

2.1.1 Diff-Based grading and TDD frameworks

2.1.2 Student interface differences

2.1.3 Instructor interface differences

2.2 Minimum essential functions for an autograder
2.3 Architectural Comparison of submit.cs with Anacapa Grader
User perspectives on Anacapa Grader

3.3 Instructor view of Anacapa Grader

3.4 Student view of Anacapa Grader

3.5 System Administrator view of Anacapa Grader
Architecture of Anacapa Grader

4.1 Storing GitHub Credentials

4.2. GitHub Permissions

4.3. Mapping users to grades

Conclusion

51 Summary of major contributions

53 Suggestions for future work

Bibliography

1 Introduction

Autograders are automatic grading systems for programming assignments. Autograded
programming assignments allow instructors and TAs to spend less time on tedious validation of
correctness and more time on content of the code, style, and/or enable them to serve more
students. Where in the past, students may have had to wait days, or even weeks for feedback
on a programming assignment, with autograded assignments, students receive immediate
feedback on their work.

Autograders have their drawbacks as well. Code may be incorrect but still pass tests
(verification vs. validation). Manual grading may be more effective at catching certain kinds of
bugs. Students may rely too much on the system as a crutch rather than doing their own testing.
TAs may not give individualized feedback for assignments on code style. Code might include
“brute force” approaches, copied/pasted code that should have been refactored, inefficient
implementations, etc.

We acknowledge these drawbacks, but note that they are out of scope for this project,
which focused only on how to address certain shortcomings of a particular autograder system,
in use at UC Santa Barbara—namely the submit.cs system developed by Bryce Boe [Boe,
2014]. In particular, the submit.cs system was found to present several challenges in terms of
being sustainable and supportable: the source code is very complex, has no test coverage, and
there was no clear roadmap for a “development/qa/production” lifecycle. While submit.cs
currently provides many benefit to UCSB CS faculty/TAs and students, it is not clear how long
the current system can be maintained and supported effectively.

We considered several alternative approaches to addressing the shortcomings of
submit.cs. First, we first considered the current code base of submit.cs to address the
shortcomings noted above. We judged that it would take more effort to refactor the code then it
would take to rewrite submit using the current architecture using a framework such as Ruby on
Rails. We also looked at an existing open-source autograder known as Web-CAT [Edwards,
2003], but found that Web-CAT had a similar maintenance and support issues (we say more
about this in Section 3.5).

Finally we chose to develop a system based on a new architecture. In reviewing the
implementation details of submit.cs, we found that the current architecture contained, as a
subset, a large number of features of git and GitHub that had been “reimplemented from
scratch”, including by not limited to, the deduplication feature of the submit.cs File Store module.
This inspired us to consider how we might leverage the GitHub.com API to replace the File
Store. As we examined this, we found more and more features of the current submit.cs that
could be replaced by leveraging git, GitHub.com, and an existing open-source project created
by GitHub called “GitHub Classroom”.

An autograder should be easy to deploy, easy to learn for both the professor and the
student, maintainable, and flexible. It is also helpful if it aligns with common development
practices such as test-driven development (TDD) and continuous integration (Cl). Ideally, it
should support any programming language that is available on the instructional lab systems
used for the CS courses offered by the department. To take it a step further, ideally, any
package, library, or other resource available on those systems should be automatically
accessible in the context in which the autograder evaluates student submissions.

The Anacapa grader takes a minimalist approach to developing an autograder, providing
only the most necessary autograding functions with a minimum of source code and application
infrastructure. We accomplish this by leveraging GitHub.com and classroom.GitHub.com for
managing projects, submissions, configuration and feedback. A feature that Anacapa grader
shares with submit.cs—in fact, the only part of submit.cs that we reused—is the reliance on
sandboxed ssh sessions on the existing UCSB CS instructional lab systems (CSIL). This
features allows instructors the freedom to develop autograded assignments using any language,
system, tool, or package available on CSIL.

Another desirable feature of a student grading system it that it utilizes development
practices that students are likely to encountered in industry. Since git and GitHub are
increasingly used for open and closed source development, GitHub is a natural choice on which
to base a grading system. Further, the workflow of our grader system mirrors the industrial
practice of Continuous Integration (Cl), where code is checked against acceptance tests each
time it is committed to the version control system.

Anacapa is built on Rails which is a popular development platform [Rails, 2015].
Additionally, Anacapa takes advantage of many Ruby libraries that significantly reduce the
amount of code that needs to be maintained. Prof. Phill Conrad has a course scheduled for
Winter 2016 (CMPTGCS 140, “Agile SAAS Development”) that will be based, in part, on training
students in Rails development by having them participate in ongoing development, testing and
maintenance of Anacapa Grader. The intent is for class to launch a self-sustaining development
team managed by Dr. Conrad that can maintain this open-source project.

The rest of this project report is organized as follows. Section 2 provides an overview of
existing grading systems, including their benefits and limitations. Section 3 describes the system
from three perspectives: that of a instructor, that of a student, and that of a system
administrator. Section 4 provides an overview of the Anacapa system architecture. Finally,
Section 5 concludes the report with a summary of the major contributions of this project, some
related work, and suggestions for future work.

2 Background on Autograder Systems
2.1 Evaluation of existing autograders

Many autograder systems exist or are under development. [Ihantola 2010] surveys seventeen
(17) such systems, and sixty (60) papers published about autograders developed between 2006
and 2010. Section 5.2 (Related Work) provides a summary of their findings.

As a basis for a more detailed comparison, we chose to focus on two specific autograders:

e WebCat, developed at Virginia Tech [Edwards, 2003]
e submit.cs, developed at UCSB [Boe, 2014]

Although other grading systems exist, we chose to evaluate Web-CAT because it is the most
mature and feature-rich grading system, providing many plugins. Additionally, we chose to
evaluate submit.cs because it is a system currently deployed at UCSB for a number of courses
and Anacapa’s purpose is to be a candidate for replacement of the submit.cs system. For
purposes of our evaluation, we do not consider commercial systems or closed-source systems.

2.1.1 Diff-Based grading and TDD frameworks

Both Submit.cs and Anacapa use diff-based grading. For a particular test a student
receives points if there is no difference between expected output and the student’s output.

Although Web-CAT provides a diff-based grading plugin, Web-CAT is more typically
used with TDD frameworks such as JUnit and CxxUnit. Web-CAT grading reports can provide
students with grades based on code coverage. Web-CAT also allow students to easily write
their own tests cases. Grading according to these additional criteria provides an advantage over
diff-based systems

Web-CAT’s TDD framework based grading requires that a grading plugin for each TDD
framework. Diff-based systems are significantly more flexible because any program that
provides an output can be graded. For example, if a instructor prefers to use the GTest
framework as opposed to CxxUnit framework for a C++ assignment significant effort would be
required to write and install a new gtest Web-CAT plugin.

Since Anacapa is designed to be minimalistic a simple diff-based grading criteria is used.
Testing frameworks can be used with a diff-based system, but output is statically compared.
Grades are essentially pass/fail. Student supplied test cases are not considered for grading.

2.1.2 Student interface differences

Anacapa differs from other grading systems in that students use GitHub Classroom to
submit assignments, which gives students relevant experience with git repositories as well as
gives them the ability to use their favorite tools that integrate with GitHub. Since many
development environments already integrate with GitHub students are provided with flexibility in
the tools that she/he might want to use. For example, it is possible to use GitHub with source
code collaboration services like c9.io. Since grades are posted to GitHub repositories students
even can do everything within GitHub, including editing the code directly from the GitHub page.
Basing Anacapa on GitHub maximizes the potential for flexibility and extendability.

Web-CAT has two main pieces: a web page and eclipse plugin. It does not require
eclipse, but by using eclipse students can test code before submission and submit directly from
an Eclipse plugin. Grades can be checked by viewing a web-page based report.

Similarly to Web-CAT, submit.cs provides a web page that allows students to check their
grade. Submissions can either be generated from a web page based submission or a script that
is installed on CSIL, allowing students to make submissions from a command line.

2.1.3 Instructor interface differences

Both submit.cs and Web-CAT require instructors to create projects via a web page.
Anacapa allows an instructor to create projects in a GitHub repository. Using a git repository
allows instructors to track changes to their assignments as they evolve over time. Additionally, it
takes very little effort to push new assignments to the Anacapa system. In contrast both
submit.cs and Web-CAT requires quite a few steps to publish new assignments.

Our decision to use a hand edited config file versus a web interface for assignment
creation was both pragmatic and strategic. Simply put, we believe that computer science
instructors prefer config files and git over web interfaces. Anecdotal evidence suggest that
designing an assignment using this methodology takes significantly less time than setting up an
assignment using the web-page based Ul of a system such as submit.cs. Comparing these user
interface methods could be a subject of future work. If it is found that a web interface is
preferred, developing such an interface for Anacapa would be a straightforward task, though it
would present more code to maintain.

2.2

Minimum essential functions for an autograder

In Agile development, there is a notion of “minimum viable product” (MVP). Our approach to
developing an autograder was to identify and focus on this MVP.

In our view, the minimum viable product for an autograder is that it must be able to provide the
following functions:

2.3

As an instructor | can create a project definition, including instructor supplied files,
student supplied files and grading criteria.

As an instructor | can create a grade report for all students.

As a student | can register an account that links to a verified school account.

As a student | create submissions.

As a student | can view autograding results.

Architectural Comparison of submit.cs with Anacapa Grader

Although we defer a detailed discussion of the architecture of Anacapa Grader to Section 3, for
purposes of comparison, we provide a brief discussion now. Since Anacapa Grader relies on
GitHub.com and GitHub Classroom for many essential functions, there are only two major
system components:

A Ruby on Rails application deployed on Heroku.com that provides a minimal user
interface, and responds to push webhooks from GitHub.com. Since all of the data is
stored in GitHub repositories all student grade reports are stored as GitHub markdown
files(Readme.md). Additionally the project definition and the student submissions are
also stored in GitHub repositories. Thus, the database is mostly relegated to storing
mappings to GitHub credentials and the required web page views are minimal.
Essentially, GitHub is providing most of the views for the system.

A set of “workers” that were modeled after submit.cs system, which remotely executes
code on CSIL machines for the purpose of isolation and maintaining a runtime
environment. CSIL machines provide a running environment that matches the student's
execution environment which is difficult to reproduce. Each worker runs under a different
account on CSIL (i.e. submit2, submit3) for isolation purposes. Anacapa creates SSH
sessions to CSIL machines that allows it to run untrusted student code. For testing
purposes, any machine can act as a worker as long as it provides SSH key based
authentication. In order facilitate the transition from submit.cs assignments to Anacapa
and leverage the work done by Bryce Boe, several considerations were made to make
the transition easier. This includes breaking up execution into a build phase and an
execution phase as well as modeled the testable definitions after submit.cs.

Anacapa Grader Architecture

submit.cs architecture
(Figure 4.2 from [Boe, 2014])

B

(Internet }j-
M‘-—n_..f—'

— =
Heroku
Rails App server
Pastgresqgl SidekigRedis GitHub
[
[Worker Prooy | | Worker

App App App
Server || Server || Server

PostgreSQL

File Store

RabbitMQ

Submission | Worker &3
Verifier)| Proxy

(=)
OWorker

- J

Figure 4.2: Provides an overview of the system architecture and how components
interact. Pink lines indicate messages being passed to and from the RabbitMQ service.
Note that each worker runs in a separate isolated environment.

Figure 1: Architectural Comparison of submit.cs with Anacapa Grader

3 User perspectives on Anacapa Grader

3.1 Course Setup for Anacapa Grader

Since Anacapa leverages a significant amount of GitHub and GitHub Classroom, first we
describe how these systems work. An instructor uses the GitHub Classroom web site to
associate a GitHub organization with a particular course offering or “classroom”. Instructors can
then set up each assignment in Github Classroom. For each assignment, Github Classroom
provides the instructor a link to distribute to students. When each student clicks on that link, the
student is directed to the GitHub.com login page, and upon logging in, a GitHub repository is
automatically created in the correct organization for that particular assignment. Starter code is
also automatically pushed to this repository. Students have write access to these repositories,
but not administration access. Instructors have administrative access to the student repositories
as administrators of the organization used for the classroom.

An instructor that wants to use Anacapa grader has to take one additional step beyond
the “stock” setup for GitHub Classroom, which is to register the GitHub organization for the
course with the Anacapa Grader website. This is one of only two human user facing user
interfaces provided by Anacapa Grader.

The primary effect of registering a GitHub organization with Anacapa Grader is that
Anacapa Grader sets up GitHub webhooks associated with the organization, and
subsequently, every repository created in the organization. Because of the presence of these
web hooks, each time a repository in the organization is created, or a commit it made to it, a
message is sent to the Anacapa Grader backend web server. These webhooks make it possible
for nearly instructors and students with Anacapa Grader to take place through the GitHub user
interface, and through normal GitHub activities, chiefy committing code, rather than having to
learn a separate user interface.

3.2 Repositories used by Anacapa Grader

There are five repository type used by Anacapa Grader, as shown in Table 1. The role of
each of these repositories, the process by which they come into existence, and their
relationships are presented in Figure 2, and explained in the remainder of this section.

The five types are repositories are:
1. grader repository: one per assignment. Created by instructor by hand editing.
Contains reference implementation, and test case configuration. Available to
instructors only.

expected repository: one per assignment. Automatically generated by Anacapa

grader. Contains expected results for test cases. Available to instructors only.

student repository: one per student per assignment. Created by GltHub

Classroom, then hand edited by student. Contains the student's actual work on

the assignment.

results repository: one per student per assignment. Created automatically by

Anacapa grader, and updated each time the student commits code to the student
repository. Contains the actual results for each test case. Not directly accessible

to students, since some test case output may be configured to be hidden from
students. Full access for instructors.

grade repository: one per student per assignment. Created automatically by

Anacapa Grader. Contains a formatted grade report for the student. Updated
each time a student commits code to the student repository. Read only for
student, full access for instructor.

Table 1: Anacapa Grader Repository Types

Role

Naming Convention

Instructor
Access

Student
Access

Created

Grader

grader-$(LABNAME)

Read/Write

None

manually, by instructor

Expected

expected-$(LABNAME)

Read/Write

None

Anacapa

Student

$(LABNAME)-$(STUDENT)

Read/Write

Read/Write

GitHub Classroom

Results

results-$(LABNAME)-$(STUDENT) | Read/Write

None

Anacapa

Grade

grade-$(LABNAME)-$(STUDENT) Read/Write

Read Only

Anacapa

Instructor Flow
Assignment: lab01

Student Flow
Username: cgaucho

grader-lab01

expected-labl1

\ resulis-lab01-cgaucho

\ lab01-cgaucho

\ grade-lab01-cgaucho

Figure 2: Repository workflow

Here is a more detailed explanation of each of the five repositories.

The instructor repositories must be generated before the student can begin working on
their assignment. These are the grader repository, which the instructor creates and the
expected repository that is automatically generated by Anacapa. The instructor manually
creates the grader repository and places into it three things:

e A reference implementation of the work the student is expected to submit. This is
used to generate the expected output.

e Files that are part of the submission that the student does not need to change.
This can also include files that the student will not have access to such as data
used in tests and/or test cases that are not provided to the student.

e A configuration file for the test definitions.

When the instructor creates and pushes any grader repository that matches the proper
naming convention and contains the necessary configuration files, a message is automatically
sent to the Anacapa grader. This message is generated by a “post-commit hook” that is
associated with each repository in the organization. In response, Anacapa generates an
expected repository based on the grader repository. It contains the automatically generated
expected results which will be used for comparison when students submit assignments.

For a given assignment, there are three repositories that are associated with each
student. The student repository is the repository automatically created by GitHub Classroom
and is the one in which the student actually completes the assignment. The results repository
contains the automatically generated output of the student’s assignment and is not visible to the
student. The grade repository contains the final grade report for each student, which the
student can view.

3.3 Instructor view of Anacapa Grader

The instructor must first add the classroom to the organization list in Anacapa. This is a
one time step. The name of the organization added must match the one used in GitHub
Classroom.

This can be done by visiting:
https://anacapa-grader.herokuapp.com/organizations/new

Next, the instructor must create a project grader repository. A sample can be obtained here:
https://GitHub.com/project-anacapa/grader-SAMPLE

https://anacapa-grader.herokuapp.com/organizations/new
https://github.com/project-anacapa/grader-SAMPLE

The grader repository contains instructor files, student files and a testable.json file. The
student files is a reference implementation of a student submission. The instructor files are files
that are provided by the instructor which aren’t intended to be modified by the student and the
student will not have access to these files. The testable.json contains all the test definitions and
grading criteria for the assignment.

After a grader repository has been created for an assignment the instructor can create a
GitHub repository in the classroom organization using the naming convention
grader-$(LABNAME) and push the test definition to this repository. After the push, an
expected-$(LABNAME) repository will be auto generated in the organization.

The last step is to setup an assignment in GitHub Classroom by visiting
https://classroom.GitHub.com/classrooms and creating the assignment using the labname and
organizations from the previous steps. After this step the assignment is ready to go.

Grades can be checked by visiting the url described by this format:
https://anacapa-grader.herokuapp.com/organizations/$(organization_id)/grade_reports/$(lab_na
me)

3.4 Student view of Anacapa Grader

A one time requirement for students is to visit the website where they register for the
course, namely: http://anacapa-grader.herokuapp.com/register/ . They also must ensure that
their umail.ucsb.edu email address is associated with their GitHub.com account (note that
GitHub permits multiple email addresses to be associated with an account.)

When the student visits this link, they are asked whether they will give Anacapa Grader
permission to view email addresses associated with the account. Anacapa uses this permission
to match GitHub.com accounts with student identities as made available to instructors on UCSB
systems such as eGrades (the grade reporting system) and Gauchospace (Moodle), the
campus LMS.

The instructor provides an assignment link when creating a GitHub Classroom
assignment. The student will have a project repository after clicking on the classroom link.
GitHub Classroom provides the student with write access to this repository write by making the
student a collaborator. Shortly after submitting to the student repository a student will receive
their grade in a automatically generated grade repository. Since students should not be allowed
to change their grade, the student is added as a read-only collaborator to the grade repository
as a Readme.md.

https://classroom.github.com/classrooms
http://anacapa-grader.herokuapp.com/register/

3.5 System Administrator view of Anacapa Grader

Anacapa is based on the Ruby on Rails framework, which provides significant
advantages when it comes to maintenances and deployability over systems like submit.cs and

Web-CAT.
submit.cs Web-CAT Anacapa Grader
Language Python Java Ruby
Framework Pyramid WebObjects Rails
Source files 72 1103 54
Lines of code 7,245 282,135 1,600

Web-CAT written in Java is based on the WebObijects framework—a framework
initialized released in 1996, and that has had no active development since 2008. The code
based for Web-CAT is rather large, consisting of over 1103 Java and HTML files. Submit.cs is
written in Python and is based on the Pyramid framework and is divided up into 72 Python and
Python Template files consisting of 7,245 lines of code.

Anacapa on the other hand consists of 54 Ruby and Embedded Ruby (.erb) files and
1600 lines of code, not including test cases. (Submit.cs does not have any test cases.). We
should acknowledge that Anacapa is not quite production ready at the time of this writing, and
the code base is likely to grow.

In contrast with in Anacapa, submit.cs has several ad-hoc dependences including
SQLAIchemy for the object relational mapping (ORM) and Alembic for migrations. Rails
integrates both the ORM and migrations into a single framework, which many developers are
already familiar with.

Rails apps are also significantly easier to deploy on cloud services like Heroku.
Web-CAT being based on WebObjects requires significant effort to deploy in cloud based
systems like Heroku. Virginia Tech allows other institutions to use their servers, which suggest
that deploying and maintaining your own server can be difficult.

Deploying submit.cs on Heroku is possible, but challenging. The submit.cs system
depends on the python-ldap package, and that package depends on native libraries. A build
package is required just to compile submit.cs for Heroku. The submit.cs system also requires

non-ephemeral filesystem storage, so files are automatically lost when a Heroku dyno is
restarted.

Anacapa deployment on Heroku by contrast is straightforward, since it was designed to
run on cloud-based infrastructure from its conception.

Backing up Anacapa’s database is also trivial since there are already a number of ways
to backup Postgresql databases on Heroku, and it is relatively small in size—and contains very
little mission critical data. It actually provides only a mapping from GitHub user accounts to
access tokens used for authentication in the GitHub API. Further, even in the worst case
scenario of total data loss, the only thing necessary to completely recover would be for the
instructor to register each of her/his courses once, and for each user to register his/her GitHub
account once. Those two actions would be all that would be necessary to completely restore the
system. This is because the most artifacts of the Anacapa system are stored in GitHub.com
repositories. Note that there isn’t really any need to reestablish credentials from previous
quarters, since there are no active users, and all artifacts of student work and student grades
are maintained in GitHub repositories.

In order to backup submit.cs, not only would does the postgresql database need to be
backed up, but the filestore must be backed up as well. This file store contains a copy of every
file ever submitted to submit.cs and although deduplication techniques are used to minimize the
size, no compression techniques are used to minimize the size of this file store. It's growing and
shows no signs of stopping. Anacapa uses GitHub for the purposes of storing student
submissions and reports, so the system administrator is not burdened with the task of backing
up a file store or providing more storage when the files store grows beyond the capacity of the
drive.

4 Architecture of Anacapa Grader

GitHub Classroom allows students to submit assignments fairly easily, but it is lacking a
autograder system. Anacapa is that autograder system. By leveraging features present in
GitHub, we were able to keep the implementation of Anacapa fairly minimal.

In order to leverage a GitHub Classroom, Anacapa hooks into the same organization
that is used in by Classroom via an organization-level webhook. When a GitHub webhook event
is triggered, GitHub does an http request to the Anacapa web server. The other feature that
Anacapa takes advantage of is the GitHub API which allows Anacapa to administer repositories,
read user information and add webhooks.

A student submits an assignment by pushing their git repository containing their code to
the student’s classroom repository. Since the repository exists in the organization, any push
event to a student’s repository triggers the organizational webhook. We also store instructor
project definitions in repositories in the same organization (though with security settings that
prevent student access) and use the same webhook to process instructor grader repositories.

An instructor will create a grader repository, which is processed into an expected results
repository. Anacapa is aware of the naming convention GitHub Classroom uses to name
student repositories and also adds naming conventions of it’s own for other repositories used for
calculation of student grades. Thus, Anacapa can process a repository differently depending on
what kind of repository is being committed to.

The instructor flow starts with a grader repository that the instructor creates manually.
Pushes to this repository generate webhook events that, so that Anacapa can automatically
create an expected results repository. The student flow starts with a assignment repository that
is generated from GitHub Classroom. A push to this repository generates a push webhook event
which triggers Anacapa to push to a results repository. Subsequently the results repository
generates another webhook event which triggers Anacapa to build a grade repository with the
student results. The purpose of the intermediate results repository is to hold the output artifact
from all the test runs, since the instructor may elect to hide these results from the student.

4.1 Storing GitHub Credentials

The primary purpose of the database on Anacapa is to map organization to GitHub
access tokens. The GitHub OAuth web flow allows Anacapa to get an OAuth access token
which can be used to access GitHub API on the behalf of a particular user. Additionally, the
database stores mappings from organizations names to organization instructors. The instructor
must have administrative access to the GitHub repository. By using the instructor GitHub access
token Anacapa is able to perform the required grading tasks on behalf of the instructor.

4.2. GitHub Permissions

Anacapa uses the GitHub API to get access to GitHub resources that an instructor or
student has access to. When an instructor or student logs in, an access token is generated that
grants Anacapa permissions to read and write to organizational repositories, and install
webhooks.

In order to access certain parts of the GitHub API applications can request certain
scopes, i.e. defined subsets of information access. Unfortunately many of these scopes are very
broad, but it is currently the only way that GitHub allows applications to access the
organizational repositories that are used by GitHub Classroom. Current required scopes for
Anacapa are:

e repo - For reading/writing private organizational repositories that the instructor
has access to.
e admin:org - listing all organizations
e admin:org_hook - install organizational web-hook
The student scopes required for retrieving student e-mail addresses are:
e user:email - Finding all email addresses associated with a user account.

4.3. Mapping users to grades

One problem with using GitHub is there must be a mechanism for linking student
accounts to grades. The mechanism submit.cs uses is the UCSB Idap server.. The primary
purpose for this mapping is, so that grade reports can be generated for each student and the
grade can be associated with a student identity in other grading systems such as
GauchoSpace.

In place of this, Anacapa uses a minimalist approach that has been commonly used in
many systems. GitHub allows for multiple email addresses associated with an account and uses
a simple email verification method to ensure the student email account belongs to the student.
Note that since Anacapa is hosted on Heroku, which is an off-campus server, UCSB Idap
access is not an option without clearing significant administrative hurdles.

The database additionally stores mappings from students to access tokens that are
necessary for retrieving emails used for determining student identity. UCSB provides each
student with a user account and an associated email account(i.e. <user>@umail.ucsb.edu).
Unfortunately GitHub does not provide a separate API to verify school enroliment, although this
same technique is used for their educational discount program. The simple method Anacapa
uses to establish identity is to search the entire email list for each student for the school email
address associated with a GitHub ID. Grade Reports can then be generated automatically with
UCSB net IDs by querying the GitHub API for mappings between student accounts and
searching for a list of grade repositories in the GitHub organization.

5 Conclusion

5.1 Summary of major contributions

In this report, we compared Anacapa to other autograders, described how users interact
with Anacapa, and described the mechanisms Anacapa uses to integrates with GitHub and
GitHub Classroom. Since user interactions with Anacapa is utilizes GitHub APIls and GitHub
Classroom it is able to achieve the minimal viable product with relatively few lines of code,
leveraging tools that are already supported by GitHub and the open-source community.
Anacapa provides much of the same functionality as Web-CAT and submit.cs does, but is open
to extendability without significant support cost in an agile fashion. Anacapa provides the
functionality that is missing in GitHub Classroom, which is the autograder and makes it a much
more useful product which will help make students get engaged and save time for professors.

5.2 Related work

Earlier sections of this paper already cited the submit.cs system [Boe, 2014] and
Web-CAT [Edwards, 2003] and important related work on autograders. In fact, autograders are
a subject of a great deal of interest. As Armando Fox et al. wrote in a paper that appeared in a
recent workshop [Fox, et al. 2015]

“Given that 17 autograding systems and over 60 papers about them were pro-
duced from 2006—2010 alone [11], why did we choose to build our own?”

The paper cited as [11] in this quotation is [Ihantola, 2010] which does indeed provide a
review of autograder systems developed between 2006—2010. From this paper we learned that
output comparison (the technique we call “diff-based grading) is the most typical form of
autograding. We learned that output comparison systems are typically language independent.
The paper also described other forms of testing beyond output comparison and XUnit tests such
as the JUnit and CxxUnit tests in Web-CAT. The paper describes various techniques used by
grading systems to prevent mindless trial and error submission like those observed in [Boe,
2014] with students using the submit.cs system. The authors of [lhantola, 2010] were also
disappointed by the closed-source nature of most autograders, so we are glad that Anacapa
does not contribute to this problem.

Meanwhile, [Fox, et al. 2015] goes on to explain the reasons they developed their own
system, several of which apply equally to our effort. The authors explain that many existing
systems are tightly integrated with a Learning Management System (LMS). (The local UCSB
LMS is Gauchospace, based on Moodle.) They express a concern that the autograder should
be instead insulated from the LMS for security reasons, i.e. to avoid the risk of untrusted student
code compromising the integrity of the LMS. They also expressed the concern that while their

autograder needed to be insulated from LMS, it still needed to integrate with it in order to
communicate results to students. We have the same needs, but our needs are particular to the
systems used at UCSB both for identifying students (e.g. perm number, umail address) and for
managing courses (eGrades, Gauchospace.)

A difference between the needs expressed by [Fox, et al. 2015] and our needs is that
they required an autograder that would work at the scale of a Massive Open Online Course
(MOOC). Our system has a much smaller scale requirement. The limiting factor of our system is
the workers which are not currently deployed in the cloud. However, given that our
implementation is based on a rails app that can run on cloud infrastructure (Heroku) and utilizes
cloud services (GitHub), and that the number of worker processes is not a priori limited in any
way, we see no particular obstacles to scaling our architecture.

Among the drawbacks we cited of autograder systems is that they do not address issues
of coding style. An approach to coding style is represented in [Moghadam et al., 2015], which
describes how an instructor can use a user interface to train a perceptron on how to grade
programming style for MOOC style courses.

5.3 Suggestions for future work

An important consideration that has not yet been explored is pair and group
assignments. This is a feature present in submit.cs that is perhaps the first important
enhancement beyond “minimum viable product”. There is a feature for group assignments in
GitHub Classroom, though we have not yet explored how it works, or how it might be integrated
with Anacapa Grader. We leave that as future work, with the observation that is is reasonably
likely that it may be rather straightforward.

For those who wish to use a Ul to generate assignments, we suggest a web based Ul
which constructs grader repositories, similar to the instructors Ul in submit.cs. This may
increase adoption since many people still like to use Uls and it would help teach instructors how
to use the system. Providing such a Ul does not preclude allowing instructors that wish to
continue hand editing the configuration to continue to do so, and would be a straightforward
enhancement. Ideally, it could be developed in a way that it as loosely coupled to the rest of
Anacapa as possible.

A benefit of being extremely light weight is that Anacapa can be easily extended. Our
last suggestion for future work is to provide a plugin framework similar to Web-CAT, but easier
to use. The primary modification to the system would be the way that the grade report gets
generated in the last step by comparing the differences of the two functions. Since Web-CAT
requires an understanding of the intricacies of the system to build new plugins as well as system
administrative access to install. We propose a plugin framework that an instructor can
administer and one that is easy to use in the context of the current system.

Bibliography

[Boe, 2014] Boe, Bryce A. "Enabling Wide-Scale Computer Science Education through
Improved Automated Assessment Tools." Order No. 3645611 University of California, Santa
Barbara, 2014. Ann Arbor: ProQuest. Web. 4 Dec. 2015.

[Edwards, 2003] S. H. Edwards. Rethinking computer science education from a test-first
perspective. In Companion of the 18th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, OOPSLA ’03, pages 148-155. ACM,
2003.

[Fox, et al. 2015] A. Fox, D. A. Patterson, S. Joseph, and P. McCulloch, "MAGIC: Massive
Automated Grading in the Cloud," in CHANGEE (Facing the challenges of assessing 21st
century skills in the newly emerging educational ecosystem) workshop at {EC-TEL} 2015, 2015.

[GitHub, 2015] GitHub API v3 | GitHub Developer Guide. Retrieved December 4, 2015, from
https://developer.GitHub.com/v3/

[Heroku, 2015] Getting Started with Rails 4.x on Heroku | Heroku Dev Center. Retrieved
December 4, 2015, from https://devcenter.heroku.com/articles/getting-started-with-rails4

[lhantola 2010] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppala. 2010.
Review of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli Calling International Conference on Computing Education
Research (Koli Calling '10). ACM, New York, NY, USA, 86-93.
DOl=http://dx.doi.org/10.1145/1930464.1930480

[Moghadam, et al., 2015] Joseph Bahman Moghadam, Rohan Roy Choudhury, HeZheng Yin,
and Armando Fox. 2015. AutoStyle: Toward Coding Style Feedback at Scale. In Proceedings of
the Second (2015) ACM Conference on Learning @ Scale (L@S '15). ACM, New York, NY,
USA, 261-266. DOI=http://dx.doi.org/10.1145/2724660.2728672

[Rails, 2015] Ruby on Rails Guides. Retrieved December 4, 2015, from
http://guides.rubyonrails.org

https://developer.github.com/v3/
https://devcenter.heroku.com/articles/getting-started-with-rails4
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1145/2724660.2728672
http://guides.rubyonrails.org/

